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Abstract. The mineral composition of a suite of igneous and metamorphic rocks was
determined using the thermal infrared emission spectra of these rocks in a linear spectral
deconvolution algorithm. This algorithm assumes that the infrared spectrum of each rock
is a linear mixture of the component mineral spectra weighted by volume abundance. A
diverse suite of 36 common rock-forming and accessory minerals was used in the
deconvolution. The model was tested by comparing the mineralogy derived from the
infrared spectrum with petrographically estimated abundances for 45 igneous and 51
metamorphic rock samples. The mineral abundances derived from these two techniques
agree to within 67–15% for the primary minerals feldspar, pyroxene, quartz, and calcite/
dolomite and 69–17% for secondary minerals such as micas and amphiboles. These
differences are comparable to the error for traditional thin section mode estimates, which
are 65–15% for major minerals and #5% for minor minerals. The detection limit for the
primary and secondary minerals found in the rocks analyzed ranged from 5 to 10%. Each
major rock type studied here was easily distinguished by its spectral characteristics. The
best results, in both the qualitative determination of the rock type and dominant minerals
and the quantitative reproduction of absorption features and mineral composition, were
obtained for igneous rock samples. For metamorphic rocks, pelite and quartzo-feldspathic
samples gave slightly better results than calcareous or mafic samples. A controlled
analysis, in which the end-member suite was reduced based on an initial estimate of the
rock type, only improved the results by several percent for most primary and secondary
minerals. The quality of the obtained results demonstrates that a linear deconvolution of
infrared emission spectra provides an accurate, rapid technique for determining the
quantitative mineral composition of rock samples in a laboratory and has application to
future in situ measurements.

1. Introduction

Thermal infrared vibrational spectroscopy is based on the
principle that vibrational motions occur within a crystal lattice
at fundamental frequencies that are directly related to the
crystal structure and elemental composition (i.e., mineralogy)
[e.g., Wilson et al., 1955; Farmer, 1974]. The fundamental fre-
quencies of geologic materials typically correspond to wave-
lengths greater than ;6 mm and provide a diagnostic tool for
identifying virtually all commonly occurring minerals. Al-
though infrared (IR) spectroscopy has been extensively used in
chemistry and physics for over a century, only relatively re-
cently has this technique been applied to the qualitative and
quantitative analysis of geologic materials. Laboratory studies
have demonstrated that absorption features in an infrared
spectrum of a mineral vary systematically with composition and
crystal structure and have characterized the spectra of individ-
ual minerals [e.g., Lyon, 1965; Walter and Salisbury, 1989; Salis-
bury et al., 1991; Salisbury, 1993]. Several studies have exam-
ined the infrared spectra of mixtures of particulate minerals
and have shown that these mixtures can be reproduced by the
linear combination of infrared spectra [Thomson and Salisbury,
1993; Ramsey and Christensen, 1998]. However, there have

been few attempts to quantitatively determine the mineral
composition of rocks using spectroscopic methods.

Notable first attempts to extract a rock composition from an
infrared spectrum of a crushed or powdered sample were con-
ducted by Hunt and Turner [1953] and Lyon et al. [1959]; both
studies were able to quantify the presence of primary minerals
with 610% and 65% accuracy, respectively. Further infrared
spectroscopic work by Lyon, with various collaborators, devel-
oped three important new hypotheses. First, spectral effects
caused by preferential orientation of minerals are mainly a
concern for foliated metamorphic rocks, as minerals in most
igneous rocks are randomly oriented [Lyon and Burns, 1963].
Second, the wavelength positions of the fundamental absorp-
tion bands are not strongly affected by grain size [Lyon, 1963].
Third, the combined set of peaks and troughs composing a
spectrum is diagnostic of the qualitative bulk composition of
the rock [Lyon, 1963], and the depth of the peaks and troughs
is important to the quantitative modal composition of the rock
[Lyon and Burns, 1963; Lyon, 1963].

The next advance in the spectroscopic analysis of geologic
materials occurred when it was shown that laboratory emission
measurements could be made directly from the rough surfaces
of rock samples [Lyon, 1965]. Emission measurements had not
been made previously due to the difficulty in accurately deter-
mining the temperature of the rock sample. Lyon made the
crucial assumption that the absolute temperature of the sam-
ple was not necessary as long as it could be reproduced by a
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blackbody standard. Another conclusion from his work was
that high surface porosity, roughness, or particle sizes ,50–
100 mm cause decreases in feature depth significant enough to
make the analysis of emission spectra the most difficult of the
infrared techniques.

Lyon [1965] showed that the distinctive reststrahlen bands
(emissivity minima) due to the fundamental silicon-oxygen
stretching modes in the silicate lattice shift to longer wave-
lengths with decreasing silica content in igneous rocks. Other
approaches have been developed to use spectral shape to de-
termine bulk composition [Vincent and Thompson, 1972;
Walter and Salisbury, 1989]. Application of these techniques
allows interpretation of chemical composition from the spec-
trum but does not achieve the ultimate goal of determining the
mineral composition directly from a measured spectrum.

The simplest approach to calculating a modal analysis from
an infrared spectrum is based on the assumption that the
spectrum of a mixture, such as that of a rock, is a linear
combination of the spectra of its component minerals. Adams
et al. [1986] performed the first “reverse sense” application of
the linear mixing hypothesis when they identified four compo-
nents in the multispectral images obtained at the Viking
Lander 1 site and used these as end-member components in a
least squares fitting method to analyze the composition of the
scene. Thomson and Salisbury [1993] provided laboratory ver-
ification of the hypothesis in the “forward sense” by measuring
reflectance spectra of granular mineral mixtures of various
proportions and comparing these spectra with spectra of mix-
tures synthesized from weighted proportions of the individual
mineral spectra. Most recently, Ramsey and Christensen [1998]
performed a reverse sense application of linear mixing on
granular mineral mixtures and developed an algorithm for
identifying the components in a mixed infrared emission spec-
trum. Statistical analyses performed in these studies indicate
that the abundances of minerals in these simple mixtures are
predictable to within 65%.

The purpose of the work presented here is to apply a linear
deconvolution model to measured thermal infrared emission
spectra of igneous and metamorphic rocks in order to deter-
mine the quantitative mineral composition of the samples.
These models can be applied to laboratory sample analyses,
terrestrial remote sensing observations, and future in situ field
sample analysis.

2. Approach
2.1. Modal Analysis by Deconvolution

Previous studies have demonstrated that the infrared spectra
of mixtures of granular materials are closely approximated by
the linear combination of the component spectra and that the
fraction of each component in the spectrum closely matches
the volume abundance of each component in the sample [Ram-
sey and Christensen, 1998; Thomson and Salisbury, 1993]. The
linear nature of the mixing of infrared spectra is due primarily
to the high absorption coefficients of vibrational absorptions,
which minimize transmission through grains and reduces mul-
tiple-grain interactions. Several linear retrieval (deconvolu-
tion) models have been developed to determine the mineral
abundance from an infrared spectrum [Adams et al., 1986;
Johnson et al., 1992; Ramsey and Christensen, 1998]. In this
paper we have used the specific linear deconvolution algorithm
developed by Ramsey and Christensen [1998]. The inputs to this
algorithm are a mixed spectrum and a suite of end-member

mineral spectra; the results are a best fit model of the mixed
spectrum, a list of the end-members present and their volume
percentages, and a determination of the error of the model.

Deconvolution is achieved using matrix algebra to solve a
system of equations, created from the rock and mineral spec-
tra, by minimizing the residual error to produce a best fit
solution [Adams et al., 1986; Johnson et al., 1992; Ramsey and
Christensen, 1998]. End-member mineral spectra are used to
create the matrix [X](l ,h) where l is the number of wave-
lengths in the end-member spectra and h is the number of
end-members; for most cases in this study, l was 500–600 and
h was 25–40. Thus the matrix component [X](i , j) is the value
of the emissivity at the ith wavelength of the jth end-member
mineral. Emissivity values of the mixed (rock) spectrum are
written into a column vector [U](l), and the percentage that
each end-member contributes to the model is given in the
“solution vector” [z](h), in which each of the elements must
sum to 1.0 6 a small error. For this application the values of
the solution vector are the derived modal abundances of the
sample.

In the linear deconvolution model [Adams et al., 1986; John-
son et al., 1992; Ramsey and Christensen, 1998] the equation
describing how the end-member minerals are related to the
mixed rock spectra is

@X#~l,h!@z#~h! 5 @U#~l!, (1)

which can be solved for the end-member percentages [z](h),
giving

@z#~h! 5 ~@X#~h,l!
T @X#~l,h!!

21@X#~h,l!
T @U#~l!. (2)

Because l is greater than h, the solution is overdetermined,
and the single model which best fits the available data must be
identified. Selection of a best fitting model is accomplished by
simultaneously calculating and minimizing a linear least
squares fit from the difference of the measured emissivity (« i)
and the modeled emissivity (¥Xjz j) created from all end-
members j 5 1 through h, inversely weighted by the uncer-
tainty in the spectral measurement at each wavelength, s i,
giving

x2 5 O
i51

l 1 « i 2 O
j51

h

Xjz j

s i

2
2

. (3)

To minimize the chi-square (x2) equation and produce the best
fitting model, end-members and corresponding percentages
are chosen such that the derivative of (3), taken with respect to
[z]( j), is equal to zero.

Included with the model results is the error indicating how
well the model reproduces the original mixed spectrum. The
residual error at each wavelength, d(i), is calculated from the
difference between the measured and modeled emissivities. To
give a single error value to the entire fit, the residual error is
summed over all wavelengths in the root-mean-square (RMS)
error equation:

RMS 5 ÎO
i51

l

d i
2/l . (4)

Values of [z](h) are mathematically allowed to be negative in
order to improve the model fit to the data. However, negative
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abundances have no physical meaning and are not allowed in
the final solution. This restriction was achieved by removing
end-members that contribute negative percentages to the
model during the first iteration, recalculating the model with
the remaining end-members, and continuing this process until
all percentage values were positive.

2.2. Rock Sample Selection

A representative suite of 96 igneous and metamorphic rock
samples was selected from various collections at Arizona State
University (ASU) for this study. Samples were chosen that
conformed to two criteria: (1) Each sample had compositional
and physical properties (grain size, texture, etc.) that are rep-
resentative of its rock type. Although unusual characteristics
often provide a more interesting study, simplicity is a more
desirable quality to establish confidence in the technique. (2)
Each sample had been studied previously by traditional petro-
graphic techniques, and modal abundances had been calcu-
lated. The petrographically determined modes, hereinafter re-
ferred to as the “known” modes, were used as a basis of
comparison for establishing the accuracy of the spectral decon-
volution.

Rock samples used in this study include 26 granitic igneous
rocks, 8 rhyolitic to andesitic igneous rocks, 11 andesitic to
basaltic igneous rocks, 19 pelitic metamorphic rocks, 9 calcar-
eous metamorphic rocks, 13 mafic metamorphic rocks, and 10
quartzo-feldspathic metamorphic rocks. Each sample is rela-
tively large, up to 10 cm in diameter, allowing the rocks to be
measured in their natural state, i.e., not crushed or powdered.
Detailed descriptions of each rock sample, including a brief
physical, petrographic, and mineralogical description, known
modal abundances with a description of the technique used,
associated errors, references, and a measured infrared spec-
trum, are available from Feely [1997].

Spectra of the rock samples were obtained at 2 cm21 sam-
pling over '1600–400 cm21 ('6–25 mm) using an instrument
that has two main components: a commercial Mattson-Cygnus
100 spectrometer and a custom external sample chamber. The
main body is a Michelson interferometric spectrometer that
has been modified to collect infrared energy emitted from a
sample source. A Plexiglas glovebox, adjacent to the external
port of the spectrometer, houses the sample chamber and the
mirrors that direct the sample energy into the optical path of
the spectrometer. Constant environmental conditions within
the sample chamber were obtained by insulating the chamber
with a double-walled cylinder containing circulating water at a
controlled temperature of 24.08C 6 0.03 [Ruff et al., 1997]. This
chamber approximates a blackbody cavity, allowing only sam-
ple energy and interior reflected energy (removed during cal-
ibration) out to the detector through an opening on the cham-
ber top. To reduce the effects of variable atmospheric
conditions in the laboratory, the glovebox and spectrometer
were purged continuously with “scrubbed air,” free of partic-
ulates, CO2, and water vapor, and also purged during spectra
acquisition with N2 gas. See Ruff et al. [1997] for a more
detailed description of the spectrometer apparatus and spec-
tral measurement procedures.

Rock samples were heated in an oven at 808C for ;24 hours
in order to increase the signal-to-noise ratio. Hot samples were
then placed inside an insulated sample cup and enclosed in the
sample chamber. Depending on the height of the sample
within the chamber, the diameter of the spot viewed by the
spectrometer can be varied from ;1.5 to 5.0 cm in order to

optimize the available surface area of the sample. This spot
size was adjusted to account for variations in sample size and
to maximize the number of mineral grains observed. During a
7-min acquisition period, 260 interferograms were collected
per sample spot and averaged together to produce the final
spectrum.

Calibration of the raw spectrum to emissivity was achieved
using two calibrated blackbodies [Christensen and Harrison,
1993; Ruff et al., 1997]. Spectra were obtained from the two
blackbodies, a “warm” 708C source and a “hot” 1008C source,
using the same conditions and methods described above for
rocks. Measurement of the warm blackbody was repeated at
least once every hour. Emissivity of the sample («samp(l)) was
calculated as a function of wavelength from the equation given
by Christensen and Harrison [1993]:

« samp~l! 5

Vmeas~l , T!

F 2 Benv~l , T! 1 B inst~l , T!

B samp~l , T! 2 Benv~l , T!
, (5)

where Vmeas(l , T) is the voltage measured by the instrument,
F is the instrument response function calculated from the two
blackbodies, Benv(l , T) is the radiance of the environment
estimated by a Planck curve at the sample chamber tempera-
ture, B inst(l , T) is the radiance of the instrument estimated by
a Planck curve at the instrument temperature, and Bsamp(l ,
T) is the radiance of the sample estimated by a Planck curve at
the calculated sample brightness temperature. Sample emissiv-
ity values measured and calculated as described above are
accurate in most cases to within 2% and reproducible to better
than 1% [Ruff et al., 1997].

The measured spectra shown throughout this paper were
produced from the calibrated emissivity with some additional
processing. First, in an attempt to get the most representative
spectrum of each rock sample, three to four spots from rough
and cut surfaces were measured for each sample and averaged
together. For metamorphic samples, emissivity measurements
of most samples represent the combination of views both nor-
mal and parallel to the foliation direction. Second, sharp (two
to five samples wide) spikes in the spectra at 1221, 845, and 667
cm21 occur due to known instrument noise and CO2 and were
removed by interpolation.

2.3. End-Member Minerals

The fundamental assumption in this work is that all of the
minerals present in each rock are contained in the end-
member mineral suite used in the deconvolution. The accuracy
of the deconvolution modal analysis technique for identifying
solid-solution mineral constituents is dependent upon having
end-members available with the correct structure and compo-
sition [Ramsey and Christensen, 1998; Hamilton et al., 1997].
The Arizona State University (ASU) Mineral Library currently
contains spectra of ;160 minerals, carefully selected for com-
positional purity, with detailed information on the composi-
tion, physical condition, history, and quality of each mineral
[Christensen et al., 1999]. Most library minerals are granular
samples, with sizes ranging from 710 to 1000 mm, and have
spectra obtained using methods similar to those described
above. It has been shown [Ramsey and Christensen, 1998] that
use of mineral end-members in this size range is appropriate
for deconvolution of solid samples and avoids nonlinear com-
plications due to scattering effects [Conel, 1969; Hunt and
Vincent, 1968].
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A suite of 36 minerals (Table 1) commonly found as primary,
secondary, or accessory minerals in igneous and metamorphic
rocks was assembled for use in the deconvolution algorithm.
This suite did not contain all of the minor minerals found in
the complex metamorphic rocks studied, which led to minor
discrepancies in the model analysis, as discussed below, but did
not affect the overall conclusions. All but three of the mineral
spectra were obtained from the ASU Mineral Library. The
spectra of sanidine, vesuvianite, and zoisite, measured in bi-
conical reflectance, were obtained from Salisbury et al. [1991].
These spectra have been converted to emissivity assuming
Kirchhoff’s law (« 5 1 2 R). This assumption is not strictly
correct because these samples were measured in biconical,
rather than hemispherical, reflection [Salisbury et al., 1994] but
is adequate for the modeling performed here.

The spectral features of three minerals (serpentine, talc, and
zoisite) were significantly shallower than spectral features ob-
served in rocks containing these minerals. This is due to the
presence of fine, clinging particles coating the mineral samples

that are not present on the surfaces of minerals within rocks.
These end-member spectra were scaled to approximate the
rock spectra (Table 1). The spectra of three minor minerals
(biotite, sanidine, and muscovite) were deeper than the fea-
tures observed in average rock spectra. The sanidine spectrum
was obtained from Salisbury et al. [1991], and its spectrum was
adjusted to be consistent with the feldspar suite obtained in
emission at ASU (Table 1). The spectra of biotite and musco-
vite were scaled to decrease their spectral contrast (Table 1) to
a level more consistent with that observed in rocks. However,
even with this adjustment, biotite and muscovite were difficult
to identify, as discussed in sections 3.3 and 3.4.4.

Rock samples can have lower spectral contrast than the
library minerals due to the large size (710–1000 mm) of the
particles used for the library. In the application of this algo-
rithm it has been observed that when the measured rock spec-
trum is significantly shallower than the combined mineral com-
ponents the algorithm will use a relatively featureless mineral
spectrum to compensate in the model. To limit this inappro-

Table 1. End-Member Mineral Suites Used in Deconvolution

TES Mineral
Library Number Mineral

Blind Application,
% Strength of Spectrum

Controlled Application,
% Strength of

Spectrum

amphiboles
HS-116.4B actinolite 100
BUR-4760 anthophyllite 100
WAR-0404 hornblende 100 100
BUR-840 biotite 55 55
BUR-1100F calcite 100 100
WAR-1924 chlorite 100 100
BUR-1840C dolomite 100
BUR-1940 epidote 100 100

feldspars
BUR-3460A microcline 100 100
WAR-RGSAN01 orthoclase 100 100
(Sanidine.1s) sanidine* 45 45
WAR-0235 albite 100 100
WAR-0024 andesine 100 100
BUR-340 anorthite 100 100
BUR-3080A labradorite 100 100
WAR-0234 oligoclase 100 100
BUR-120A garnet 100
(ODG-95) glass - obsidian† 100 100
WAR-0219 glaucophane 100
WAR-1002 kyanite 100
WAR-5474 muscovite 80 80
FAY-01 olivine - fayalite 100 100
BUR-3720 olivine - forsterite 100 100
HS-23.3B phlogopite 100

pyroxenes
WAR-6474 augite (CPX) 100 100
BUR-1820 diopside (CPX) 100 100
WAR-5780 diopside (CPX) 100 100
NMNH-93527 bronzite (OPX) 100 100
NMNH-R1440 enstatite (OPX) 100 100
BUR-5080 wollastonite 100
BUR-4120 quartz 100 100
(no number) quartz slab 100 100
HS-8.4B serpentine 200 200
BUR-4640C talc 280
(Vesuvian.1s) vesuvianite* 100
(Zoisite.1c) zoisite* 250

blackbody 100 100

Total number of end-members is 37 for the blind application and 26 for the controlled application. CPX,
clinopyroxene; OPX, orthopyroxene.

* Mineral spectrum obtained from Salisbury et al. [1991].
† End-member spectrum obtained from Ramsey et al. [1993].
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priate mineral identification, a blackbody spectrum, which has
unit emissivity at all wavelengths, was also provided as a po-
tential end-member [Hamilton et al., 1997; Ruff, 1998]. The
blackbody abundances required to fit the spectra were gener-
ally small (,15%), which indicates that there is little decrease
in the spectral contrast of rocks relative to coarse-grained
mineral samples. Models containing blackbody as a component
were normalized to adjust for the blackbody abundance before
final analysis (i.e., a model that contains 53% quartz, 30%
feldspar, and 17% blackbody, for a total of 100%, was normal-
ized to 64% quartz and 36% feldspar).

3. Results and Discussion
3.1. Mineral Identification and Abundance

The spectra of all 96 rocks used in this study were analyzed
using the linear deconvolution algorithm to identify the com-
ponent minerals and their volume abundances. Examples of
the fit of the model to the measured spectra are given in Figure
1 for a subset of 36 rock samples. The igneous samples range
in composition from granodiorite (ELF) to basaltic-andesite
(9-94-12) to rhyolite (8235), and the metamorphic samples
were selected to cover a similarly representative range (see
Table 2 for sample names and sources of the original petro-
graphic analyses). The samples in Figure 1 were chosen to
include examples of the best and worst model fits.

As seen in Figure 1, a linear model generally provides an
excellent fit to the measured rock spectrum for a wide range of

spectral shapes and rock compositions. Spectra with significant
spectral detail and band depth (e.g., samples ELF, BB10, C1)
are matched well. Spectra with broad features and reduced
modulation of the fine-scale structure (e.g., samples MG16,
9-94-12, 9-94-36) are also closely matched by linear mixtures of
end-member minerals. The formal error in the fit between the
model and the original spectrum is given by the RMS emissiv-
ity error. Table 3 shows the RMS error by rock type, averaged
for all of the samples, using the full suite of 36 end-member
minerals with no initial assumption about the rock composition
(“blind application”). The RMS difference between the model
and measured spectra was 0.004–0.005 for igneous rocks and
0.008–0.014 for metamorphic rocks.

Figures 2 and 3 summarize the comparison of the mineral
abundances determined spectroscopically and petrographically
for all 96 rock samples. Data points that fall on the diagonal
line represent a perfect agreement between the two tech-
niques. Overall the spectroscopic analysis produces mineral
abundances that agree well with the actual mineral abundances
in each rock. We have attempted to quantify the uncertainties
in the derived mineral abundances using the median and stan-
dard deviation of the differences in the mineral percentages
derived from spectroscopic and petrographic techniques for
the primary and secondary minerals.

The median value (Table 4) provides a measure of the sys-
tematic differences between the spectroscopic and petro-
graphic methods. Only biotite 1 chlorite shows a significant
systematic bias between the two techniques, with the spectro-

Table 2. Rock Type and Sample Name of Samples Illustrated in Figure 1

Sample Rock Type and Sample Name Original Petrographic Analysis Source

ELF hornblende-biotite granodiorite Borg et al. [1986]
ENG hornblende-biotite granodiorite Borg et al. [1986]
ESM quartz diorite Borg et al. [1986]
EZS biotite monzogranite Borg et al. [1986]
BB2 Numbla Vale adamellite Chappell and White [1976]
BB10 Buckely’s Lake adamellite Chappell and White [1976]
C1 Cooma granodiorite Chappell and White [1976]
MG16 Tuross Head tonalite Chappell and White [1976]
8218 latite Merrill [1974]
8220 latite Merrill [1974]
8234 quartz latite Merrill [1974]
8235 rhyolite Merrill [1974]
8236 alkali trachyte Merrill [1974]
4-95-25 olivine-subalkali basalt Leighty [1997]
9-94-12 basaltic andesite Leighty [1997]
9-94-19 andesite Leighty [1997]
9-94-36 basaltic andesite Leighty [1997]
9-94-42 andesite Leighty [1997]
12-94-8 basaltic andesite Leighty [1997]
GM-1 albite-garnet-mica schist S. Peacock (personal communication, 1997)
7047 phyllite Feely [1997]
7461 retrograde sericite-mica phyllite Feely [1997]
7471 phyllite Feely [1997]
SC-15 vesuvianite-wollastonite granite S. Peacock (personal communication, 1997)
7449 wollastonite marble Feely [1997]
7573 tremolite marble S. Peacock (personal communication, 1997)
7732 calc shist Feely [1997]
Z-65 hornblende-biotite schist S. Peacock (personal communication, 1997)
83-20 antigorite serpentinite Peacock [1985]
83-47D serpentinite Peacock [1985]
86-10B garnet-hornblende-diopside granofel S. Peacock (personal communication, 1997)
7561 greenstone Feely [1997]
7265 gneiss Feely [1997]
7614 kyanite quartzite Feely [1997]
14611 coarse banded gneiss Feely [1997]
14613 augen granitegneiss Feely [1997]
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scopic method tending to underestimate the abundance of
these minerals. In order to provide some measure of the
spread of the uncertainties we have also determined the stan-
dard deviation of the differences (Table 4), assuming that they
have a normal distribution. The one-sigma standard deviation
of the difference between the quartz abundances derived by
the two models is 611%, i.e., 66% of the derived values for
quartz fall within 610.9% of the known value, which agrees
well with visual inspection of Figures 2 and 3. The feldspar
abundances agree to within 615%, calcite and/or dolomite
abundances agree to within 614%, and pyroxene abundances
agree to within 67%. The major mineral (.5%) abundances
of igneous rocks are more accurately determined than those of
the metamorphic rocks, with errors typically within 65–10%.

Errors in the spectroscopic determinations are not the only
source of uncertainty because errors also exist for the known
modes. The errors in the petrographic determinations are de-
pendent on the method used to determine the rock composi-
tion. Traditional thin section mode estimates typically quote
accuracies of 65–15% for major minerals and #5% for minor
minerals. Modes obtained by counting several thousand points
per sample slide or slab have accuracies ranging from ,1 to
3% for major and minor minerals. The majority of the samples
used in this study have known modes estimated from thin
sections, with only 34 samples analyzed by point-counting
methods. In order to test the effect of petrographic analysis
errors on our results we determined the accuracies of the
mineral determinations using only the rocks with point count
data. Unfortunately, data were only available for the quartz
and feldspar minerals in the granite and andesite samples. The
agreement between the spectroscopic and petrographic deter-

mination did improve slightly using the point count data, with
the standard deviation in the differences for quartz and felds-
par improving to 6.4% and 7.1%, respectively.

Another source of error in the known modes that is more
difficult to quantify is due to human error when trying to
differentiate between optically similar mineral species. This
error is demonstrated by the results of sample 169, which was
identified from hand sample and thin section analysis as a
marble composed of ;75–100% calcite and 0–25% quartz
[Melchiorre, 1993]. Deconvolution of the infrared spectrum
indicated that the sample is 88% wollastonite, with only 4%
calcite, 0% quartz, and trace amounts of garnet and talc (Fig-
ure 4). Further examination of the sample revealed that it is
indeed almost entirely composed of wollastonite and does not
react to hydrochloric acid. To our knowledge, this is the only

Figure 2. Comparison of petrographic and infrared modal
analyses for quartz, feldspar, pyroxene, and calcite in igneous
rock samples. The solid line represents a perfect match be-
tween the results of the two techniques. For the data shown,
average deviation from the perfect match line ranges from
62% to 611%.

Table 3a. Comparison of RMS Error Results Using Blind
and Controlled End-Member Suites

Rock Types
Blind

Application
Controlled
Application

Difference
(Controlled

Minus
Blind)

Igneous
Granite 0.0051 0.0060 0.0009
Rhyolite-andesite 0.0044 0.0055 0.0011
Basalt 0.0041 0.0056 0.0015

Metamorphic
Pelite 0.0082 0.0100 0.0018
Calcareous 0.0108 0.0109 0.0001
Mafic 0.0142 0.0131 20.0004
Quartz-feldspathic 0.0078 0.0083 0.0005

Table 3b. Comparison of Composition Error Results Using Blind and Controlled End-Member Suites

Minerals

Controlled Application Blind Application Difference
(Standard Deviation)

(Controlled Minus
Blind)

Standard
Deviation Median

Standard
Deviation Median

Primary
Calcite/dolomite 9.61 1.66 13.41 2.20 23.80
Feldspar 15.40 22.28 15.21 22.47 0.19
Pyroxene 9.21 0.69 6.77 2.05 2.44
Quartz 11.88 0.78 10.93 1.08 0.95

Secondary
Amphibole 13.51 20.70 16.75 0.33 23.24
Biotite/chlorite 10.28 25.50 15.69 27.50 25.41
Muscovite 8.66 1.68 8.72 0.95 20.06
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sample used that contained a major error in the “known”
modal analysis.

The results presented in Figures 2 and 3 are relevant to
laboratory, field, and remotely sensed data with high spectral
resolution (2–10 cm21) and broad wavelength coverage 6–25
mm). Other applications of this technique will include the use
of multispectral remotely sensed data for which the spectral
resolution and range are significantly reduced. As a simple test
to estimate the effects of spectral resolution and range on the
ability to derive mineral abundance from spectral measure-
ments, we degraded the rock and mineral library spectral to
simulate a 10-band multispectral instrument. The spectra were
convolved with idealized square-wave filters 1 mm wide on 1
mm centers from 5.5 to 14.5 mm. These data were reanalyzed in
a manner identical to that used for the data shown in Figure 2.
Because there were only 10 bands, only 10 mineral end-

Figure 3. Comparison of petrographic and infrared modal
analyses for quartz, feldspar, pyroxene, and calcite in meta-
morphic rock samples. These data are slightly more dispersed
than the igneous data and show an average deviation from the
perfect match line ranging from 64% to 619%. Figure 4. Comparison of calcite and wollastonite end-

member spectra as potential constituents of sample 169, Pre-
cambrian marble. Deconvolution model is composed of 4%
calcite, 88% wollastonite, and a few accessory minerals. Spec-
tra are offset for clarity; wollastonite by 20.3, sample 169 and
model 169 by 20.42.

Figure 5. Comparison of petrographic and infrared modal
analyses for the igneous rock suite after degrading the rock and
mineral library spectra to simulated 10-band spectra.

Table 4. Comparison of Modeled and Known Mineral
Percentages

Mineral

Median
Difference,

%
Standard Deviation

of Difference, %

Primary
Calcite/dolomite 2.20 13.41
Feldspar 22.47 15.21
Pyroxene 2.05 6.77
Quartz 1.08 10.93

Secondary
Amphibole 0.33 16.75
Biotite 1 chlorite 27.50 15.69
Muscovite 0.95 8.72
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members were used in the deconvolution. We selected calcite,
three feldspars (microcline, albite, and anorthite), olivine, two
pyroxenes (augite and diopside), quartz (slab and granular),
and blackbody from the full library for use in the reduced
end-member subset.

The comparison of the mineral abundances determined
spectroscopically and petrographically for the igneous rock
samples is shown in Figure 5 for the simulated 10-band spectra.
As seen in Figure 5, the results are remarkably good consid-
ering the significant degradation applied to the spectra. All of
the minerals present were successfully identified. Furthermore,
the number of cases in which minerals were identified in the
spectra that were not identified petrographically was un-
changed. There is little change in the derived quartz abun-
dance, and calcite was successfully identified. The pyroxene
abundances were overestimated by up to ;30%, and the
feldspar abundances were underestimated by comparable
amounts.

Specific examples of the spectroscopic and petrographic
mineral analyses are given for three rock samples in Table 5.
Sample C1 is primarily composed of quartz, feldspars, biotite,
and muscovite. Of these components the model accurately
identified quartz, feldspar, and muscovite. Biotite was under-
estimated in the model and replaced by an assortment of ac-
cessory minerals, each identified at ,4% for a total of 15.4%.
This type of substitution for biotite with other minerals at low
percentages occurs in many samples but can be reduced by
using an igneous, felsic mineral end-member suite, rather than
the general igneous and metamorphic end-member suite, as
discussed below. A small amount of calcite was incorrectly
identified to model the water vapor features at 1600–1400
cm21. The model produced by deconvolution matches the
measured spectrum well with an RMS emissivity error of
0.0026.

In some samples, such as granite, the spectral features of the
dominant minerals (quartz and feldspars) are readily identifi-
able in the rock spectrum. However, many rock spectra are
more complex mixtures of spectral features, and the individual
mineral spectra are more difficult to visibly identify. For ex-
ample, fine-grained basaltic and andesitic igneous rocks have
spectra with broad features and less spectral detail (e.g., sam-
ples 9-94-12 and 9-94-36 in Figure 1). Even these spectra,
however, are composed of a unique mixture of component
mineral spectra that can be retrieved using a linear deconvo-
lution. This ability to deconvolve overlapping bands is the
strength of the deconvolution analysis technique and allows the
component minerals to be retrieved from a complex mixture to
within the error limits.

The ability to deconvolve complex rock spectra with low
high-frequency spectral structure is illustrated in Figure 6 for
sample 9-94-12. Petrographic analysis identified this sample as
a basaltic andesite, composed of a mafic matrix supporting
1-mm olivine phenocrysts and pinpoint-sized vesicles (5%)
[Leighty, 1997; Feely, 1997]. The model reproduced the mea-
sured spectra with an RMS error of 0.0036 and identified the
three dominant minerals, feldspar, pyroxene, and olivine, to
within 63–11% (Table 5). Figure 6 shows the composite model
spectrum, along with the spectra of the end-member minerals,
and illustrates how the fine-scale spectral structure of the in-
dividual minerals can overlap and be subdued in the rock
spectrum. Samples such as this would be difficult to analyze
using comparisons of individual spectral band shapes to those
of individual minerals. However, the component minerals can

be identified by a simultaneous, least squares solution for all
minerals present in the rock. Thus, while the spectra of the
basalts and andesites have broad spectral features, their spec-
tra can be uniquely matched, and the correct mixture of the
mineral components can be determined with the same accu-
racy as obtained for rocks in which the individual mineral
features can be directly identified.

In addition to the quantitative accuracies of the composi-
tional results obtained using deconvolution, the shape of the
sample spectra and general identification of minerals also pro-
vide a wealth of information at the qualitative level. Even when
the mineral shapes and depths are not perfectly matched, or
when other mineral end-member complications arise (dis-
cussed below), the general rock composition can be deter-
mined if the overall spectral match is good. For example,
sample 86-10B (Figure 1 and Table 5) was modeled by 60%
hornblende, 11% pyroxene, 10% garnet, and 10% epidote,
with minor amounts of olivine, calcite, quartz, and zoisite, to
reproduce the measured spectrum with a relatively high RMS
of 0.0099. This analysis indicates that the sample is mafic with
some degree of metamorphism; however, the poor fit to sev-
eral of the features indicates that at least some of the minerals
composing this sample are not available in the end-member
suite. The known identity and composition of this sample (Ta-
ble 5) shows that three major minerals (hornblende, pyroxene,
and garnet) were correctly identified and that it is a metamor-
phosed mafic rock.

Most of the samples used in this study can be grouped by
rock type based on their spectral shapes (Figure 1), as noted by

Table 5. Modal Results for Selected Samples

Minerals Known Model

Sample C1, Cooma Granodiorite
Biotite 17.4 7.16
Calcite 0.0 0.07
Garnet 0.0 0.32
Glass 0.0 2.20
Hornblende 0.0 2.68
K-feldspar 8.8 8.22
Muscovite 4.0 3.37
Olivine 0.0 2.54
Plagioclase 18.9 18.65
Pyroxene 0.0 3.87
Quartz 48.3 48.31
Serpentine 0.0 2.27
Blackbody 4.25*

Sample 9-94-12, Basaltic-Andesite
Feldspars 65 62.30
Garnet 0 0.87
Glass 0 8.93
Muscovite 0 5.70
Olivine 5 5.07
Pyroxene 25 14.70
Quartz 0 0.53
Zoisite 0 2.10

Sample 86-10B, Garnet-Hornblende-Diopside Granofel
Calcite 0 2.64
Epidote 0 9.89
Garnet 40 9.86
Hornblende 35 59.83
Olivine 0 5.54
Pyroxene 20 10.81
Quartz 1 1.30
Zoisite 0 0.46

* Normalized when blackbody present.
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Hamilton et al. [1997] for mafic meteorites. Deep quartz fea-
tures dominate most granitic, pelitic, and quartzo-feldspathic
spectra (see sample C1 or 7614; Figure 1). Accessory meta-
morphic minerals in pelitic and quartzo-feldspathic samples
contribute spectral features, especially at lower wavenumbers
(longer wavelengths), that help differentiate some of these
samples from their igneous equivalents. Fine-grained, felds-
par-rich, igneous rocks have shallow spectra with a broad fea-
ture between 900 and 1200 cm21, usually occurring as distinct
double absorptions in rhyolitic or andesitic samples (see sam-
ple 8236, Figure 1) or becoming broader due to the mafic
minerals in basaltic samples (see sample 9-94-36, Figure 1).
Compared to these igneous rocks, the metamorphosed mafic
samples often have sharper features in these approximate
wavelength regions due to the dominant features of the meta-
morphic mafic minerals superimposed over the feldspars (e.g.,
sample Z-65, Figure 1). Significant amounts of calcite or do-
lomite in a rock result in two deep features at 1400–1600 and
880 cm21, allowing easy identification of calcareous samples
(see sample 7573, Figure 1).

3.2. “Blind” Versus “Controlled” Applications

The results included here for igneous and metamorphic rock
samples represent a blind application of the deconvolution
modal analysis technique, where a single end-member mineral
suite was used to determine the composition of a wide range of
rock samples. A different approach is presented in detail by
Feely [1997], where the same modeling technique was applied
except that separate end-member suites were used that con-
tained only minerals common to the specific rock type being
analyzed (granite, basalt, pelite, calcareous, etc.). Because
some basic knowledge of the rock type of the sample is re-
quired prior to deconvolution in order to choose the most
appropriate end-member suite, this type of analysis is a “con-
trolled application.” The blind application achieved slightly
better model fits than the controlled method (lower RMS in

Table 3a) because there were more potential minerals to use in
the deconvolution. For example, many metamorphic secondary
and accessory minerals, in both igneous and metamorphic
models, were incorporated at abundances of ,5% and pro-
vided improved matches to the subtle spectral structure (often
noise) in the sample spectra. However, the blind method does
not necessarily provide a more accurate determination of the
rock composition. The improvements in compositional deter-
mination using the controlled method are illustrated in Table
3b. The controlled application gave somewhat (;4%) better
results for calcite/dolomite and the secondary minerals but did
not improve the results for the other minerals. On average, the
difference between the abundances derived by the blind and
controlled applications is #5%.

A combined technique, using results from a first blind ap-
plication to tailor an end-member suite for a second controlled
application analysis on the same sample, would incorporate the
best attributes of the two approaches. The important assump-
tion in this technique is that many minerals in the blind end-
member suite are not actually present and that their removal
results in an improved compositional analysis. Specific factors,
such as a priori knowledge of the sample rock type, expecta-
tions for or against particular rock types in the sample area, or
geologically unreasonable mineral assemblages proposed by
the blind application, may support this assumption. Based pri-
marily on the assumption of geologically plausible mineral
suites, a simplified end-member suite, with 11 of the less com-
mon metamorphic accessory minerals removed, was used in a
second controlled application with eight of the samples se-
lected from this study. The results for each stage of the analysis
are shown in Figures 7a and 7b. In general, the compositional
results were only slightly improved. Nine minor minerals
present in the rocks were successfully identified in the con-
trolled application but not in the blind method. Eleven major
minerals were identified with slightly greater (5–10%) accuracy

Figure 6. Measured and modeled spectra and the spectra of the major component minerals. The sample
shown (9-94-12) is a basaltic andesite composed primarily of feldspar, pyroxene, and olivine (Table 5). While
the component minerals have sharp, distinct spectral features from 8 to 12 mm, the rock spectrum has a broad
shape in which the mineral spectral features are difficult to identify. The simultaneous, least squares decon-
volution, however, provides an excellent fit to the rock spectrum and gives an accurate determination of the
mineral composition and abundance as shown in Table 5. Spectra are offset for clarity; average feldspar by
20.2, olivine by 20.35, and average pyroxene by 20.4.
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in the controlled technique, whereas three minerals were less
accurately identified.

3.3. Detection Limits

The average detection limit of the deconvolution algorithm
has been estimated to be 4.0% 6 0.5% [Ramsey and Chris-
tensen, 1998] based on extensive statistical evaluation of the
algorithm and on the observation that minerals known to be
present in abundances of about #5% contribute little to the
overall measured spectrum of a rock sample. Therefore min-
erals that are modeled using the deconvolution algorithm at
abundances of ,5% may not actually be in the rock sample.

False identification or omission of mineral components in an
infrared spectrum at the 5% level is not considered to be a
serious problem for many applications because these minerals
would constitute secondary and accessory minerals which are
not usually necessary for rock identification. However, if many
minerals are present with low individual abundances, together
they may account for a significant proportion of the spectrum,
and this could have repercussions on the features and compo-
nent percentages of the model produced. Using the blind ap-
plication, an average of two to four minerals per sample were
identified at ,5% (Figure 8) and account for an average of
8–9% (maximum 25%) of the total abundance. These false
identifications resulted in a lowered model component of one
of the known minerals, often feldspar or biotite in the rocks
used in this study. Cases where there are large errors in the
model abundances often had poor overall model fits. In several
of these cases the errors are indicative of minerals present in
the rock but not available in the end-member suite (see below).

Major accessory minerals that composed 10–20% of the
known modal mineralogy, such as chlorite, sericite/white mica,
and serpentine, were included in the end-member suite and
were accurately identified during deconvolution. However,
many of the metamorphic samples in this study also include

minor (#10%) amounts of one or more of the following: apa-
tite, epidote, graphite, kyanite, rutile, sillimanite, sphene,
spinel, tourmaline, zircon, zoisite, and unidentified opaques.
Of these, only epidote, kyanite, and zoisite were available in
the end-member suite. While these minerals were usually iden-
tified in models of samples where they are known to be
present, they were often falsely identified at minor levels
(#5%) in models of samples where they were absent. Thus,
even if the minor minerals were included in the end-member
suite, it is not certain that the compositional matches for these
minor minerals would improve.

Misidentification at the 5% level was higher during blind
applications than controlled applications because of the num-
ber of minor and accessory minerals that were available to be
incorporated into the best fit solution. While the use of minor
amounts of these minerals improved the overall fits, these
minerals often constitute “noise” in the compositional solu-
tion. In general, removal of those minerals that occur at low
abundances from the end-member library did not significantly
degrade the overall fit and gave a clearer picture of the major
mineralogy of the sample.

3.4. Other Factors

3.4.1. Natural mineral variability. The minor deviations
between the corresponding sample and model spectra are due
in part to the inherent variability in the composition of natu-
rally occurring minerals. Solid solution series minerals, such as
feldspars (Figure 9) and pyroxenes, exhibit systematic shifts in
the location of diagnostic spectral features [Farmer, 1974; Nash
and Salisbury, 1991; Salisbury et al., 1987; Ruff, 1998; Hamilton,
1998]. While the end-member suites incorporated a range of
mineral compositions in the solid solution series, a complete
suite of samples is not available. Vitrification and grain size can
also play a role in varying spectral properties, such as demon-

Figure 7. Infrared modal analyses are plotted against the petrographic composition for eight igneous and
metamorphic samples. Each symbol represents the abundance for each mineral in a single rock. (a) Results
from a blind application, using a general 36-mineral end-member suite. (b) Results of the controlled appli-
cation, in which the results from Figure 7a were used to simplify the end-member suite to 26 minerals.
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strated for the plagioclase series by Nash and Salisbury [1991].
Therefore subtle differences can exist between the spectra of
minerals in the rock samples and the spectra of the available
end-member minerals. As a result of these differences, the
sample spectra could not always be precisely matched.

In addition, the available petrographic data were often not
sufficiently detailed to allow a comparison with the model
abundances derived for different members of the solid solution
series. Therefore all figures presented in this paper compare
the total feldspar or pyroxene composition because the avail-

Figure 8. End-member minerals identified in models at abundances of #5%, near the limits of deconvo-
lution accuracy. Histogram indicates that dolomite, garnet, muscovite, olivine, and zoisite are commonly used
to model subtle features in the rock spectra, although their actual presence in the sample may be questionable.
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able known modes rarely distinguish between individual solid-
solution members. Where detailed comparison was possible,
deconvolution tended to slightly underestimate plagioclase
abundances and slightly overestimate K-feldspar abundances,
while maintaining a total feldspar composition that is within
the experimental error stated above (Figure 10). This pattern
is partially explained by the fact that K-feldspar has deep,
distinct features, whereas the library spectra of the coarse-
grained oligoclase, andesine, and anorthite samples have shal-
low, broad features (Figure 9). In general, when two end-
members have similar spectral shapes, the one with the greater
high-frequency spectral variation is preferentially selected be-
cause it can provide a better fit to the noise and other vari-
ability present in the spectrum [Ruff, 1998]. As a result, the
K-feldspar minerals may be preferentially selected.

The shape, depth, and location of absorption features are
also dependent on the exact crystal structure and atomic com-
position [Lyon, 1965; Walter and Salisbury, 1989; Salisbury et al.,
1991; Salisbury, 1993]. For example, subtle variations in min-
eral structure can account for the slight differences between
the spectra of crushed crystalline quartz and a solid slab of vein
quartz seen at 1190, 540, and 515 cm21 and the depth of
features between 790 and 700 cm21. Both of these samples
were available in the mineral suite and were used individually
or together in several model fits.

3.4.2. Missing end-members. Figure 11 illustrates two ex-
amples (sample 7805, a spurrite hornfels, and sample 7709, a
glaucophane schist) of how the algorithm responds when a
major component is not available as an end-member. The
composition of the spurrite hornfels is 90% spurrite (unavail-
able) and 10% calcite, but it was modeled with a combination
of available end-members: feldspar, calcite, garnet, olivine, and
wollastonite. The RMS error in this sample is relatively high
(0.0139), and visual inspection confirms a poor fit (Figure 10).
The glaucophane schist is composed of 60% glaucophane, 25%
lawsonite (unavailable), and 10% quartz, but was modeled with
feldspar, glaucophane, and quartz and minor (,10%) amounts
of amphibole, chlorite, garnet, kyanite, olivine, pyroxene, ve-
suvianite, and blackbody. Again, the RMS error was relatively
high (0.0064).

These samples demonstrate that when an end-member is not
present in the library, a sample generally cannot be fit well by
some combination of the end-members present. These results
provide additional insight into the uniqueness of the sample
compositions determined from spectral analyses. If the correct
minerals are not present in the library, then the samples stud-
ied could not be fit well by any combination of available end-
members. Conversely, good model fits, determined both by the
RMS error and by visual inspection, are strong indicators that
the correct minerals in the correct abundances have been ac-
curately determined. The deconvolution results for these two
samples also indicate that complex models that predict unlikely
or geologically impossible mineral associations are a good in-
dication that an important mineral is absent from the end-
member suite.

Figure 9. Several feldspar end-member spectra, including K-
feldspar (top) and plagioclase solid solution series (bottom
four). Variations in the shape and location of absorption fea-
tures demonstrate effect of the changing composition from
KAlSi3O8 (K-feldspar) and NaAlSi3O8 (albite) to CaAl2Si2O8
(Anorthite). Spectra are offset for display; albite by 20.12,
oligoclase by 20.32, andesine by 20.45, and anorthite by
20.54.

Figure 10. Comparison of modal analyses for plagioclase
and K-feldspar in igneous samples for which differentiated
petrographic modes are available. Plagioclase tends to be un-
derestimated and K-feldspar tend to be overestimated, as in-
dicated by the points below and above the perfect match line,
respectively. When combined, the total feldspar composition is
accurate to 611% (see Figure 2).
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3.4.3. Calcite and dolomite. Calcite and dolomite are of-
ten intergrown and were frequently identified as a single “cal-
careous” component in optical modal analyses. Although they
are easily distinguished spectrally, the model abundances were
combined to allow for comparison with the less precise petro-
graphic determinations. Calcite or dolomite was identified in
47 samples at #5% (Figure 8) with no reported calcareous
component. In five samples, calcareous weathering and alter-
ation products were subsequently observed, and the spectral
identification was accurate. In at least 30 other samples, cal-
careous minerals were incorrectly fit to water-vapor absorption
features at 1400–1600 cm21. For abundances .5% the pres-
ence of carbonate, rather than water vapor, could be confirmed
using the 880 cm21 carbonate band. In the remaining 12 sam-
ples it is not known whether or not carbonates were actually
present.

3.4.4. Biotite, chlorite, muscovite. Misidentification was
commonly observed in the mica group (biotite, chlorite, mus-
covite). Even after decreasing the depth of spectral features in
biotite and muscovite (Table 1), the abundance of these min-
erals is consistently underestimated. For at least 10 samples the
deconvolution model used a chlorite component, which has a
similar spectrum (Figure 12), instead of biotite, the mineral
known to be present. This indicates either that the additional
features between 600 and 800 cm21 made chlorite a more
suitable component for those samples or that more biotite had
altered to chlorite than was identified in the petrographic stud-
ies.

In general, modes for all micas were underestimated with
respect to the known modes in igneous samples and ranged
widely from underestimated to overestimated in metamorphic
samples. The majority (;80%) of the petrographically identi-
fied biotite 1 chlorite in igneous samples was not recognized
during deconvolution. Examination of several of the granite
samples known to contain 0–10% biotite 1 chlorite reveals
that none of the characteristic spectral features can be ob-
served. This indicates that the problem is not due to inaccu-
rately identifying mica features as another mineral, but rather
the problem is due to a difficulty of measuring biotite 1 chlo-
rite abundances of ,10% in a rock spectrum. Falsely identified
muscovite averages ;4% and occurs most often in andesitic to
basaltic igneous samples, most of which are characterized by
shallow spectra, with broad features and/or glass features.
These observations suggest that the limit of detection is 10%
for all micas (Table 4).

3.4.5. Amphiboles. Amphiboles are a second group of
minerals that are difficult to model accurately. They were often
overestimated during deconvolution of metamorphic samples,
with abundances up to 40% when there is no corresponding
known abundance, and underestimated in igneous samples
with known abundances of up to 11%. These errors are indic-
ative of a combination of effects: the overestimation results
from the use of amphibole, like a few of the other secondary
metamorphic minerals, to fit features in the sample spectrum
not accounted for by the other end-members. The deficiency of
amphiboles in igneous samples may be due to overlaps in the
characteristic spectral features, making it difficult to identify

Figure 11. Examples of deconvolution results with incom-
plete end-member suites. (a) Derived “spurrite” mineral spec-
trum with sample and deconvolution model spectra for spur-
rite hornfels, sample 7805 (RMS 5 0.0139). Spectra offset for
display. (b) Sample 7709, glaucophane schist with deconvolu-
tion model and spectrum synthesized from glaucophane and
quartz (RMS 5 0.0064).

Figure 12. Chlorite and artificially shallowed biotite and
muscovite spectra. Note the similarity of the position and
shape of the biotite and chlorite spectral features. Spectra
offset for display; chlorite by 20.2 and muscovite by 20.33.
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amphiboles at ,10% abundance. These observations suggest
that the limit of detection is 615–20% for the amphiboles and
that there is a tendency for linear deconvolution to overesti-
mate amphiboles in metamorphic samples (Table 4).

3.4.6. Metamorphic foliation. Variable degrees of folia-
tion in 21 of the 51 metamorphic samples caused minor vari-
ations in the spectra measured at different sample orienta-
tions, which could have implications on the results of the
compositional analysis. Spectra were obtained from sample
surfaces oriented both normal to and along the foliation direc-
tion. The mineral composition results shown in Figure 3 were
obtained by deconvolving the average spectrum of all available
orientations. Most of the variation between oriented spectra
was observed as deeper absorption features, with little change
in the overall spectral shape. For a few of the samples, mica
features, primarily located between 1000 and 1100 cm21, were
enhanced when the sample was viewed perpendicular to the
foliation. Thus Lyon and Burns [1963] were correct in their
prediction that foliated rocks would show preferential orien-
tation effects; however, the differences were not significant
enough to warrant additional consideration during this study.

4. Conclusions
A deconvolution technique has been applied to determine

the quantitative mineral composition of igneous and metamor-
phic rocks from their infrared spectrum based on the hypoth-
esis that a measured rock spectrum represents a weighted
linear summation of the mineral spectra that compose the
sample. A compositional analysis of each sample derived from
deconvolution of the infrared spectrum was compared with the
petrographically estimated modes for each sample.

From the results presented here, the following conclusions
can be drawn:

1. Linear mixing is a valid assumption for infrared emission
spectra of rocks, and deconvolution of an infrared spectrum
can be used to determine the quantitative mineral composition
of rock samples. The deconvolution model successfully identi-
fied the mineral composition of 96 samples using an end-
member spectral library of 36 common rock-forming and ac-
cessory minerals. Spectroscopically determined modal
compositions are accurate to 60–15% for the major minerals
of quartz, feldspar, pyroxene, and calcite/dolomite and accu-
rate to 60–17% for minor minerals including micas and am-
phiboles. These values are comparable to the error for tradi-
tional thin section mode estimates, usually quoted as 65–15%
for major minerals and #65% for minor minerals. They are
less accurate than the results obtained by point counting sev-
eral thousand points per sample, which typically range from
,1 to 3% for major and minor minerals.

2. Lack of the correct end-members in the library results in
a poor model fit. This observation supports the uniqueness of
the model fits by demonstrating that good fits cannot be ob-
tained by a fortuitous combination of incorrect spectra.

3. The detectability limits of the technique as applied here
are ;5% for most minerals, increasing to ;10% for micas and
;15% for amphibole secondary minerals.

4. Each major rock type studied here is easily distinguished
by its spectral characteristics. The best results, in both the
qualitative recognition of the basic rock type and dominant
minerals and in the quantitative reproduction of absorption
features and mineral composition, were obtained for igneous
rock samples. For metamorphic rocks the reproducibility and

compositional analysis of the pelite and quartzo-feldspathic
samples were slightly better than for calcareous or mafic sam-
ples.

5. Knowledge of the approximate rock type is not neces-
sary before deconvolution is applied to the sample spectrum,
and accurate compositional analysis can be conducted with a
general mineral suite. If desired, these results can be used to
simplify the end-member suite in a second analysis and obtain
slightly more accurate results. However, these specialized end-
member suites only improved the results by a few percent for
most primary and secondary minerals. Thus a blind application
is more robust because it requires no a priori knowledge of the
sample, and it give comparable results to a more restricted
suite of specific minerals.

6. The main challenges encountered in the deconvolution
modal analysis technique are (1) the identification of true
mineral constituents with abundances near the detectability
limits of the technique and (2) the inclusion all of the potential
mineral constituents included in the end-member suite.

The analysis procedure developed here can be used for
modal analysis of hand samples from a geologic field study,
either in lieu of traditional petrographic methods or to assist
with the distinction between optically similar species. With the
rapid advances in technology, portable field-size spectrometers
and laptop computers will make this a valuable technique for
compositional analysis of rocks in the field.
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