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ABSTRACT

Fugitive (or airborne) dust is a primary cause of
decreased air quality, as well as being a potential
health hazard. Urban and agricultural areas are of
particular interest as fugitive dust sources because of
their potential for releases during soil disturbance,
ongoing industrial and commercial processes, and
agricultural activities. Typical strategies for assessing
and monitoring fugitive dust source areas include
numerical modeling of atmospheric circulation pat-
terns, field assessments, and collection of dust
samples using various methods. Analysis of remotely
sensed multi-spectral data provides another alterna-
tive for identifying fugitive dust source, transport,
and sink areas. Multi-spectral (visible to shortwave
infrared) data acquired by the Enhanced Thematic
Mapper Plus (ETM+) instrument on board the
Landsat 7 satellite is used to perform land-cover
classifications for the Nogales, AZ, region. Data
acquired during the winter of 2000 and the summer
of 2001 are used to assess seasonal variations and
detect land-cover changes of significance to dust-
transport processes. An expert system approach
using spectral, textural, and vegetation abundance
data is used to classify the ETM+ data into land-cover
types important to dust-transport models. The de-
termined overall accuracy of the land-cover classi-
fications is 74 percent. These results can be used to
identify (and calculate areal percentages of) fugitive

dust source, transport, and sink regions. This
spatially explicit, digital data product is useful both
as an input into dust-transport models and as a check
on the results of such models.

INTRODUCTION

Fugitive Dust

Airborne, or fugitive, dust is identified as a potential
health hazard in the United States under the Clean Air Act
Amendments of 1990. Specifically, the fraction of silt- to
clay-sized particulates ranging from 0 to 10 lm in
diameter is used as a regulatory standard for the
determination of air quality (Chow et al., 1992). Fugitive
dust originates from anthropogenic (combustion of fossil
fuels, vehicular traffic, industrial emissions, pesticide and
herbicide applications) and natural (windblown soil and
unpaved road dust) sources (Péwé et al., 1981; Iskander et
al., 1997), many or all of which can be found in
association with urban centers in the southwestern United
States and northern Mexico. Differing levels of regulatory
control in the two countries also create a situation wherein
airborne pollutants generated in Mexico can cross the
border into the United States (and vice versa).

Fugitive dust studies in the literature typically focus on
field-based data collection for epidemiological and
elemental analyses. Specific substances of interest can
include mineralogical/elemental components (Péwé et al.,
1981; Danin and Ganor, 1997; Iskander et al., 1997; and
Gómez et al., 2001); endotoxins and allergens (Ezeamu-
zie et al., 1998; Miguel et al., 1999; and Nieuwenhuijsen
et al., 1999); and pesticides (Simcox et al., 1995). There
is also a large body of work in the geological literature
regarding the dynamics of airborne dust generation,
transport, and deposition (Lancaster and Nickling, 1994).
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Numerical dispersion and atmospheric circulation
models, such as the Environmental Protection Agency
Urban AirshedModel IV (UAM-IV) and the Pennsylvania
State University/National Center for Atmospheric Re-
search Mesoscale Model Five (MM5), are employed to
estimate atmospheric and pollutant transport dynamics
using ground-based observations of meteorological, par-
ticulate, and land-cover data (Scheffe and Morris, 1993;
Chen and Dudhia, 2001a, 2001b). The meteorological and
particulate data are usually acquired on a near real-time
basis, but land-cover inputs to these models are fre-
quently obtained from spatially averaged or out-of-date
information, which can lead to errors in model outputs
(J. Zehnder, personal communication, August 24, 2001).
Remote sensing and classification of land-cover types
important to fugitive dust generation, transport, and
deposition presents a potential source of moderate- to
high-resolution, spatially explicit, and temporally accu-
rate data for input into numerical transport and dispersion
models.

Remote Sensing and Land-Cover Classification

Surficial materials (rocks, soils, vegetation, asphalt,
etc.) reflect, transmit, or re-emit some percentage of
incident energy at different wavelengths because of
electronic transitions, molecular rotations, and vibration
of chemical bonds (Kahle et al., 1993). The science of
remote sensing is concerned with the detection and
measurement of reflected and emitted energy from the
surface of the Earth (and other planets). The wavelength
regions of use in terrestrial remote sensing are defined by
atmospheric windows and include the visible to near
infrared (0.4–0.9 lm), shortwave infrared (0.9–3.0 lm),
and mid-infrared (3.0–5.0 and 8.0–14.0 lm). Satellite
and airborne remote sensing instruments sensitive to
these wavelength ranges are ‘passive’ in that ambient
solar radiation is the primary source of energy incident
to the ground surface, rather than the sensor itself
(Sabins, 1997). Plotting the variations of detected energy
with wavelength produces spectra that can be used to
obtain specific identifications of surficial materials (spec-
troscopy).

Studies of the distribution of surficial materials (or
land cover) on a regional to global scale have been
conducted since 1974 using visible to near-infrared multi-
spectral data collected by sensors on board the Landsat
series of satellites at ground resolutions of 30–80 m/pixel
(Sabins, 1997). The most recent sensor in the Landsat
series, the Enhanced Thematic Mapper Plus (ETMþ)
on board the Landsat 7 satellite, retains the visible to
shortwave-infrared wavelength coverage and spatial
resolution (30 m/pixel) of the preceding Thematic
Mapper instruments. In addition, a 15-m/pixel panchro-
matic band and improved resolution mid-infrared band

(60 m/pixel, with high- and low-gain channels) have been
incorporated into the sensor (Irish, 1998).

The data volume inherent in multi-spectral remotely
sensed data (such as those collected by the ETMþ) can be
collapsed and made more meaningful to end users through
the use of statistical clustering algorithms. These algo-
rithms classify individual pixels into discrete populations
based on analysis of the variability of information within
the dataset and automated determination of class means
(unsupervised classification). Supervised classification
algorithms allow for user specification of spectral class
means through the use of training pixels derived from the
dataset or spectral libraries. Supervised algorithms make
use of a priori knowledge of a given remotely sensed
scene, and therefore they tend to be somewhat more
accurate than unsupervised classifications (Jensen, 1996).
Both unsupervised and supervised algorithms are ‘hard’
classifiers in that they assign each pixel into one specific
class only.

The primary data source for urban remote sensing
since 1974 has been readily available and frequently
acquired multi-spectral information from a succession of
satellite-based sensors exemplified by the Landsat and
Système Probatoire d’Observation de la Terre programs.
Accurate discrimination of land-cover types in urban/
exurban areas using these data and traditional unsuper-
vised and supervised classification techniques is difficult
because of high spatial heterogeneity at the pixel level.
This difficulty is compounded by high degrees of sub-
pixel mixing, especially along boundaries between
different land-cover types (Ridd, 1995; Foody, 2000).
This produces a mixed spectral signature that is difficult
to classify accurately using hard classification algorithms.
A successful technique for improvement of classification
accuracy is to combine other forms of geospatial in-
formation with remotely sensed surficial properties data
(Trietz, 1992; Harris and Ventura, 1995; Vogelmann et al.,
1998; Stuckens et al., 2000; and Stefanov et al., 2001).
These additional data layers can then be used in hypoth-
esis-testing models (also known as expert systems) to ob-
tain accurate land-cover classifications. Geospatial data
useful in constraining traditional spectral-based land-
cover classifications in urban/exurban areas include
secondary remotely sensed information such as vegeta-
tion indices and spatial texture. Integration of socio-
political and environmental data available through
geographic information systems (GIS) and remotely
sensed surficial data for most cities is expected to
become a standard technique for urban (and environ-
mental) analysis (Donnay et al., 2001).

Research Objectives

The primary research objective was to identify land-
cover types of interest to fugitive dust modeling using
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remotely sensed data. Data collected by the ETMþ sensor
were selected for this purpose because they are readily
available for the U.S.–Mexico border region, provide
moderately high spatial resolution (30 m/pixel), are
acquired approximately every 14 to 16 days, and have
spectral coverage useful for identification of both natural
and built surficial materials. Stefanov and others (2001)
used an expert system to accurately classify a wide
variety of land-cover types (active and fallow agricultural
fields; cultivated grass; undifferentiated vegetation;
fluvial and lacustrine sediments; water; undisturbed
desert; and a range of disturbed surfaces including xeric
and mesic residential built materials, commercial/in-
dustrial built materials, and asphalt/concrete) in the
Phoenix, AZ, region using Landsat Thematic Mapper
(the predecessor of the ETMþ) data. This expert system
has been modified for use in the Nogales, AZ, region to
classify land-cover types associated with fugitive dust
generation, transport, and deposition. The ultimate goal
of the research is to provide spatially explicit, digital
land-cover data with moderately high ground resolution
for input into dust-transport models. A secondary goal is
to develop remote sensing techniques for fugitive dust
research and modeling that can be easily modified for use
with higher spatial and spectral resolution sensors such as
the Advanced Spaceborne Thermal Emission and Re-
flection Radiometer (ASTER), currently orbiting on the
Terra satellite (Abrams, 2000).

The Nogales, AZ, area was selected as the study site
for this work because it is an urban area located along the
U.S.–Mexico border region (Figure 1). The implementa-
tion of the North American Free Trade Agreement in
1994 significantly accelerated economic growth in the
border region, with subsequent increases in population
growth (current population is 12 million people; this
number is expected to double by 2020), industrial
facilities, and cross-border traffic. Air and water pollution
has also increased in the region, leading to more intensive
efforts to characterize and monitor pollution sources and
sinks (Ganster et al., 2000).

A recent assessment of air quality in the Nogales, AZ,
and Nogales, Sonora, region performed by the Arizona
Department of Environmental Quality (ADEQ) identified
unpaved dirt roads as a significant contributor to elevated
levels of fugitive dust (Heisler et al., 1999). Increasing
density of unpaved roads and construction sites associ-
ated with urban growth in the region leads to the creation
of new non-industrial or combustion-related fugitive dust
sources on a short temporal time scale due to land-cover
change. As such, this area presents an ideal situation for
use of remotely sensed data and testing of the expert
system technique. Secondary research objectives in-
cluded comparison of ETMþ pixel spectra with field
reflectance spectra as an accuracy assessment tool and
land-cover change detection in the field area using bi-

seasonal ETMþ data. Figure 2 illustrates the general
physiography (both natural and human) of the field area
and presents photographs of representative fugitive dust
generation, transport, and deposition land-cover types.

METHODOLOGY

Processing of Remotely Sensed Data

Two ETMþ scenes were obtained from the U.S.
Geological Survey’s EROS Data Center for the study
area to allow for change detection analysis. The dates of
scene acquisition (November 22, 2000, and June 2, 2001)
were selected in order to capture winter and summer
seasonal conditions. Each scene was georeferenced to the
WGS 84 spheroid and Universal Transverse Mercator
Zone 12 North coordinate system. The two scenes were
co-registered to each other to within 0.5 pixel (15 m)
using differential Geographic Positioning System (GPS)
road network data collected in the field. The study area
was extracted from each scene, corrected for the effects
of atmosphere, and converted to calibrated reflectance
using commercially available software that incorporates
the Moderate Resolution Atmospheric Transmittance and
Radiance code (Geosystems GmbH, 1999). An arid
atmosphere, desert aerosol concentration model with 15
km estimated visibility was used as input to the radiative
transfer code for both scenes.

Figure 1. Location map for the study area, with black circles indicating

the major urban centers of southern Arizona and Nogales, AZ.
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Figure 2. Enhanced Thematic Mapper Plus panchromatic image acquired on June 2, 2001, of the study area, with the dashed line indicating the U.S.–

Mexico border (note that this and all subsequent images are projected in geographic coordinates of Universal Transverse Mercator with the WGS 84

datum). Major human and natural physiographic features are indicated for reference to subsequent figures: Interstate Highway 19 (1), U.S. Route 89

(2), commercial/industrial facilities (3), hillside residential area (4), and the Santa Cruz River bed (5). Photographs depict representative fugitive dust

generation (A: residential construction site), transport (B: asphalt parking lot), and deposition (C: golf course) land-cover types.
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Calculation of Vegetation Index

Vegetation abundance for each pixel was calculated
for both ETMþ scenes using the Soil-Adjusted Vegeta-
tion Index (SAVI) of Huete (1988). This index compares
the reflectance values in the visible-red and near-infrared
portions of the electromagnetic spectrum. Actively photo-
synthesizing vegetation has a reflectance peak in the
near-infrared (ETMþ band 4) and low reflectance in the
visible-red portion of the spectrum (ETMþ band 3). The
vegetation index data are used as an additional source of
surficial information in the expert system model because
they provide a simple numerical measure of the degree
of vegetation abundance on a per-pixel basis. This infor-
mation helps to limit potential mis-classification of vege-
tated areas due to sub-pixel mixing (Stefanov et al., 2001).
The SAVI is similar to the frequently used Normalized
Difference Vegetation Index (Botkin et al., 1984) but
includes an additional factor to account for soil reflectance
such that one obtains

SAVI ¼ ðNIR� VISredÞ
ðNIRþ VISred þ LÞ

� �
� ð1þ LÞ Eq: 1

where NIR ¼ near-infrared band (band 4) and VISred ¼
visible-red band (band 3). The factor L in Equation 1 is
designed to correct for the soil reflectance component of
energy detected by the sensor and is set at 0.5 (Huete,
1988). The calculated SAVI values were rescaled to 0–
255 for incorporation into the expert system model.
Figure 3 presents the SAVI image derived from the
summer ETMþ data.

Calculation of Variance Texture

The study area comprises urbanized, undisturbed, and
grazing regions. These different types of land uses have
distinct spatial edge frequencies (or spatial texture) that can
be used as input into classification algorithms (Irons and
Petersen, 1981; Gong and Howarth, 1990; and Stuckens et
al., 2000). Urban areas typically have significant texture
resulting from buildings and street grids, whereas homo-
geneous areas such as large grazing fields have little to no
texture (Figure 4). Inclusion of spatial texture into the
expert classifier therefore provides a useful discriminator
of urban versus nonurban regions that is helpful in identi-
fying fugitive dust generation, transport, and deposition
areas. Texture values were calculated from the ETMþ
base data using a 33 3 moving window and the variance
equation

Variance ¼
X ðxij �MÞ2

n� 1
Eq: 2

where xij ¼ Digital Number value of pixel (i, j), n ¼
number of pixels in the moving window, and M ¼ the

mean pixel value of the moving window (ERDAS,
1999):

M ¼ �xij
n

Eq: 3

The 15-m/pixel panchromatic ETMþ band was not used
in spatial texture analysis, because natural surfaces exhibit
significant texture at this resolution (making urban versus
nonurban area discrimination much more difficult).

Image Classification

Land-cover classes of interest were determined based
on association with fugitive dust generation, transport,
and depositional processes. These associations were
determined primarily on the basis of existing geological
theory regarding the production, mobilization, and de-
position of windborne particles (Lancaster and Nickling,
1994); field observations in the study area; and the results
of an air quality assessment performed by the ADEQ in
the study area (Heisler et al., 1999). Soil surfaces dis-
turbed because of urban growth (construction activities
and creation of dirt roads), grazing, and recreational off-
road vehicle use are major dust generation areas. Many
impervious and non-vegetated urban surfaces such as
parking areas, industrial buildings, sidewalks, and paved
roadways can act as regions of dust transport because of
the low surface roughness and increased wind velocity
associated with these land-cover types. Dust can also be
generated from paved roadways because of vehicular
traffic; however, field observations indicated that fine
particulates were rapidly removed from paved roadways
by surface winds. Therefore, we have placed impervious
urban surfaces into the transport grouping of land-cover
types. Heavily vegetated areas such as riparian zones and
golf courses will act as dust deposition sites because of the
increased surface roughness and corresponding drop in
wind velocity. Anthropogenic sources of particulate
matter, such as industrial processes and fossil fuel com-
bustion, are not included in our analyses because the
ETMþ sensor is not optimally configured to detect them.
Table 1 lists the land-cover classes used in the initial
classification of ETMþ data and their associated roles in
fugitive dust processes.

Training regions for the land-cover classes were
determined using geological, land-use, and site-visit data.
Training pixels for the land-cover classes were obtained
for both the summer and winter ETMþ scene, with the
only exception being the Water class. Training pixels for
this class were obtained from the winter scene only,
because appreciable water was not present in the summer
scene. Each training region consisted of at least 60 image
pixels to satisfy the 10n criterion, where n ¼ number of
bands used for the classification (Jensen, 1996). Multiple
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training regions were selected for each class and then
merged to ensure a Gaussian distribution of pixel values.
Training region statistics were calculated for each class
and are presented as image spectra in Figure 5. A hard
classification of the ETMþ data was then performed
using a maximum likelihood rule. Maximum likelihood
rules define a specific data volume for each class based
on the image pixel statistics. This classification rule is
more accurate than minimum distance algorithms, which
classify pixels based solely on their proximity to
calculated class means (Jensen, 1996).

The relative accuracies of standard supervised classi-
fication approaches such as minimum distance, maximum
likelihood, and fuzzy classification are assessed for the
Phoenix metropolitan area using Landsat TM data by
Stefanov and others (2001). The results of their study
indicated that the best classification performances were
attained using fuzzy classification and maximum likeli-
hood techniques (70 to 72 percent overall accuracy) with
a relatively small number of land-cover classes (four).

Because of the similarity in land-cover types between
Nogales, AZ, and Phoenix, AZ, a similar analysis was not
performed for the study area. The results of Stefanov and
others (2001) also demonstrate the advantages of incorpo-
rating additional datasets into an expert system frame-
work for classification of urban/exurban areas (overall
classification accuracy of 85 percent for the Phoenix, AZ,
metropolitan area with 12 land-cover classes).

An expert system classification model was constructed
using commercial image-processing software (ERDAS
Imagine 8.4; ERDAS, 1999) and implemented on a Unix-
based Sun Ultra 2 server. The primary motivation behind
using the expert system was to reclassify the initial
maximum likelihood classification using the SAVI and
image texture information. This was done to reduce errors
of omission (all pixels of a given class not correctly
identified) and commission (all pixels of a given class
correctly identified, plus other pixels incorrectly identi-
fied as that class). Use of the expert system also allowed
for the recoding of the Hillslope (shadowed) and Open

Figure 3. Relative abundance of actively photosynthesizing vegetation was determined for both winter and summer datasets (summer data shown)

using Equation 1. Bright pixels are dominated by vegetation, with dark pixels having little to no vegetation.
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Field classes in the initial land-cover classification to the
Undisturbed and Vegetation classes, respectively. Several
other classes were renamed as well: Undisturbed (low
vegetation) to Undisturbed; Disturbed (commercial/in-
dustrial) to Urban (commercial/industrial); Disturbed
(mixed urban) to Urban (mixed); Disturbed (asphalt þ
concrete) to Asphalt þ Concrete; and Cultivated Vege-
tation to Vegetation (cultivated). Definitions of the expert
system classes are provided in Table 2.

Pixel classifications were determined using a hypoth-
esis-testing framework (Figure 6). In this schematic
figure, the dashed rectangle indicates the hypothesis for
evaluation, diamonds indicate decision pathways, and
rectangles indicate the variables to be tested. A pixel will
receive the final hypothesized classification if the
conditional variables comprising any decision pathway
are true. For example, if a pixel is initially classified as
Disturbed (asphalt þ concrete), has a spatial variance

texture value in ETMþ band 5 (1.55–1.75 lm) greater
than 10, and has a SAVI value greater than or equal to
120, the pixel is reclassified as Undisturbed. Only data
derived from the remotely sensed imagery were used in

Figure 4. Spatial variance texture was calculated from Enhanced Thematic Mapper Plus bands 2 and 5 for both winter and summer datasets (summer

data shown) using Equations 2 and 3. Bright pixels correspond to areas with high proportions of edges, such as urbanized regions. Dark pixels

correspond to areas with little to no edges, such as golf courses and hillsides. Natural linear features (such as ridges and stream washes) are detected

using this method, but the calculated variance values tend to be lower than those for urban regions.

Table 1. Initial land cover classes for the maximum likelihood rule.

Class Role in Dust Process

Hillslope (shadowed) Generation

Bare Soil Generation

Undisturbed (low vegetation) Generation

Disturbed (commercial/industrial) Transport

Disturbed (mixed urban) Transport

Disturbed (asphalt þ concrete) Transport

Undisturbed (high vegetation) Deposition

Open Field Deposition

Cultivated Vegetation

(golf courses, watered lawns)

Deposition

Water Deposition

Identification of Fugitive Dust Generation, Transport, and Deposition Areas
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Figure 5. Training region statistics for the winter (gray curves) and summer (black curves) land-cover types used in the initial maximum likelihood

classifications are presented as averaged Enhanced Thematic Mapper Plus (ETMþ) pixel reflectance spectra. The number of pixels comprising each

winter and summer class training region is given as n. Differences in n between winter and summer scenes are due to redefinition of training regions

(primarily to reflect seasonal differences in vegetation density and location). Error bars denote minimum and maximum reflectance values for each

ETMþ band.
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the present work because of a dearth of ancillary data for
the study area. The classification hypotheses and test
parameters used in the expert model are presented in
Appendix A. Each pixel is tested by each hypothesis in
a sequential fashion. As each pixel is classified according
to the hypothesis it satisfies, the model requires only
a single pass through the data.

Field Reflectance Spectral Collection

Reflectance spectra were collected from several
training regions and other sites in the Nogales, AZ, study
area during a winter field campaign (December 10–11,
2000) using an Analytical Spectral Devices Fieldspec
Handheld (FH) field spectrometer. The FH acquires
absolute reflectance spectra from 0.264 to 1.074 lm
using a Spectralon calibration target. This spectral range
corresponds to bands 1–4 of the ETMþ sensor, allowing
comparisons of on-the-ground measurements with the
remotely sensed data. Such comparisons are useful in
verifying training region spectra obtained from the
ETMþ data. A total of 48 field spectra of various sur-
ficial materials was collected during the winter field
campaign. Field spectral collection locations were reoccu-
pied (when possible) during a subsequent summer (June
9–11, 2001) field campaign. An additional 43 spectra
were collected during the summer field campaign. Field
validation of training sites used in both the winter and
summer land-cover classifications was also performed
during each field campaign.

The following procedure for collection of field
reflectance spectra was standardized as much as possible

to ensure collection of comparable data during each field
campaign. A calibration spectrum was acquired from the
Spectralon target prior to collection of the target spectrum
(or spectra). During the winter field campaign, variable
atmospheric conditions (cloud cover) necessitated fre-
quent collection of calibration spectra. Atmospheric
conditions during the summer campaign were clear and
sunny, which allowed for the collection of fewer cali-
bration spectra. Where physically possible, four spectra
were collected at the vertices of a 30-m 3 30-m area to
simulate an ETMþpixel. Spectra of areally dominant sur-
ficial materials were collected in areas where the pre-
ceding protocol was not possible. The physical location
of each spectral collection site was recorded using a GPS
unit, and photographs of the site were taken. Figure 7
presents representative field and corresponding image
pixel spectra for the major land-cover types of interest
(corresponding to the field photographs in Figure 2).
Field spectra have been degraded to ETMþ resolution
using the sensor filter functions. The field and image pixel
spectra were acquired during the winter field campaign
and winter ETMþ scene, respectively.

RESULTS

The present research effort uses the experimental
design of Stefanov and others (2001) for land-cover
classification of semi-arid to arid urban centers. Figures 8
and 9 present the expert system land-cover classifications

Figure 6. Schematic example diagram of the expert system used to

produce final land-cover classifications for the study area. The dashed

rectangle represents the hypothesis being tested, diamonds are conjunc-

tive decision rules, and solid rectangles represent the variables being

tested (on a pixel basis). Variable definitions are: MLC ¼ maximum

likelihood classification result (values are defined in Appendix A);

T2 ¼ spatial variance texture value for Enhanced Thematic Mapper

Plus (ETMþ) band 2; T5 ¼ spatial variance texture value for ETMþ
band 5; S ¼ SAVI value. Multiple branches connected to a single

hypothesis are exclusive conditional statements.

Table 2. Class definitions for the expert system model.

Class Properties

Undisturbed Undisturbed soil and sparse

vegetation, bedrock outcrops

Bare Soil Soil with title to no vegetation,

dry stream washes, disturbed

and graded soil

Urban

(commercial/industrial)

Mixed asphalt, concrete, soil, and

building materials; high spatial

texture

Urban (mixed) Mixed asphalt, concrete, soil,

vegetation, and building

materials; high spatial texture

Asphalt þ Concrete Mixed asphalt and concrete

Undisturbed

(high vegetation)

Undisturbed soil with abundant

vegetation

Vegetation Actively photosynthesizing

vegetation

Vegetation (cultivated) Actively photosynthesizing

cultivated grass (golf courses

and watered lawns)

Water Standing or flowing water

Identification of Fugitive Dust Generation, Transport, and Deposition Areas
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for the November 2000 and June 2001 ETMþ scenes,
respectively. Classification accuracy was assessed for the
summer scene using a reference dataset of 598 randomly
selected points for which land cover was determined using
an August 1998 digital aerial orthophoto mosaic (1-m/
pixel resolution) georeferenced to the ETMþ data. The
original ETMþ data were also used in accuracy
assessment to avoid introducing errors into the reference
dataset for temporally sensitive classes (such as bare soil
regions related to construction activities). The expert

system land-cover classifications were used to generate
100 random validation points for each output class. An
automated 3 3 3 pixel filter was passed over the output
classifications to determine validation points and ensure
random selection of each point.

A simple class majority rule was used with the filter in
order to maximize the likelihood of selecting validation
points within contiguous class groupings rather than
isolated (and potentially mis-classified) pixels. Validation
pixels that fell within their own class training regions
were removed from the reference dataset. Likewise,
validation points that did not have pixel values equal to
the class under inspection (an artifact of the pixel
selection method) were discarded. This resulted in
a range of 60–73 validation points for each output class.
Of the total reference points, 538 were selected using the
summer scene; the remaining 60 points (associated with
the water class) were selected from the winter scene. This
was done because there were few water pixels in the
summer scene, whereas the winter scene contained
numerous water pixels. Additional land-cover data for
the reference dataset were collected by field verification
of the classified images during both the winter and
summer field campaigns.

Both producer’s accuracy (the percentage of pixels
classified as a particular land cover that actually are that
land cover) and user’s accuracy (the percentage of
reference pixels for a given land cover that are correctly
classified) are generally reported. User’s accuracy is the
more relevant measure of a classification’s actual
accuracy in the field. Additional information regarding
the error matrix can be obtained using a conditional
Kappa analysis, which incorporates measures of the

Figure 7. Field reflectance spectra (solid curves) were collected during

both the winter and summer field campaigns for comparison to

Enhanced Thematic Mapper Plus (ETMþ) image pixel spectra (dashed

curves). Spectra for three land-cover classes corresponding to fugitive

dust generation (Bare Soil), transport (Asphalt þ Concrete), and

deposition (Vegetation [cultivated]) are presented (see Figure 2).

Agreement between field and image pixel spectra is good, with

absolute reflectance differences due mainly to scale differences

between the two types of measurements (4.45-cm spot diameter for

field spectra versus a 30-m3 30-m ETMþ image pixel).

Figure 8. Land-cover classification derived from the winter Enhanced

Thematic Mapper Plus data using the expert system.

Figure 9. Land-cover classification derived from the summer Enhanced

Thematic Mapper Plus data using the expert system.

Stefanov, Ramsey, and Christensen
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omission and commission errors to obtain accuracy
values (Jensen, 1996). Producer’s, user’s, and overall
accuracy (and corresponding conditional Kappa analysis
values) of the summer classification were calculated
using an error matrix (Congalton and Green, 1999).
Accuracy assessment was performed only for the summer
scene classification to minimize potential errors result-
ing from seasonal variation from the reference dataset
(which was compiled using digital orthophotos acquired
during August 1998). The winter scene classification was
used to obtain accuracy assessment results for the water
class. Overall classification accuracy is 74 percent (condi-
tional Kappa accuracy of 68 percent). The results of
accuracy assessment for each individual class are pre-
sented in Table 3. Table 4 lists the areal percentages of
each class for both the winter and summer land-cover
classifications.

Change analysis of the two ETMþ scenes was
accomplished using difference images. Subtraction of
the summer from the winter land-cover classification for
specific classes allows for a graphical representation of
the change between the two images (Figure 10). Changes
in pixel classification from winter to summer (or vice
versa) result from changes in the spectral character of the
pixel because of significant surficial material change. For
example, a pixel area with abundant vegetation classified
as Vegetation (cultivated) in the winter scene may be
dominantly bare soil in the summer (and classified as
Bare Soil). Difference images were calculated for the
Bare Soil (Figure 10A) and Undisturbed (high vegeta-
tion) classes (Figure 10B). An additional Urban ‘class’
difference image (Figure 10C), composed of pixels
classified as Urban (mixed), Urban (commercial/indus-
trial), and AsphaltþConcrete, was also calculated. Pixels
classified as a particular land-cover type in each image
were recoded to have common pixel values; all other
pixels were recoded to a value of zero. The recoded
images were then subtracted from each other.

DISCUSSION

Examination of the accuracy assessment results (Table
3) indicates a distinct division (in terms of accuracy)
between natural and built land-cover types. User’s
accuracy results for the Water, Undisturbed, Undisturbed
(high vegetation), Vegetation, Vegetation (cultivated),
and Bare Soil classes range from 81 to 95 percent (78 to
85 percent Kappa values). The Kappa value of 0.00 for
the Water class indicates that no errors of omission or
commission were associated with this class. In contrast,
the user’s accuracy results for the Urban (mixed), Urban
(commercial/industrial), and Asphalt þ Concrete classes
range from 44 to 61 percent (40 to 57 percent Kappa
values). The overall classification accuracy is 74 percent
(68 percent Kappa value).

Recasting these results in terms of fugitive dust
processes (Table 4) leads to user’s accuracies of 83 to
89 percent (generation sites), 81 to 95 percent (deposition
sites), and 44 to 61 percent (transport sites). Comparison
of the results presented in Table 4 indicate that significant
changes in land-cover areal extent took place between
November 2000 and June 2001. The most significant of

Table 3. Accuracy assessment for expert system classification.

Class

Reference

Totals

Classified

Totals

No.

Correct

Producer’s

Accuracy (%)

User’s

Accuracy (%) Kappa (%)

Water 57 60 57 100.00 95.00 0.00

Undisturbed 117 70 58 49.57 82.86 78.09

Undisturbed (high vegetation) 77 71 59 76.62 83.10 80.28

Vegetation (cultivated) 55 65 53 96.36 81.54 79.44

Vegetation 66 61 53 80.30 86.89 85.05

Bare Soil 97 61 53 54.64 86.89 84.04

Urban (mixed) 48 64 39 81.25 60.94 57.20

Urban (commercial/industrial) 44 73 41 93.18 56.16 52.36

Asphalt þ Concrete 37 73 32 86.49 43.84 39.69

Totals 598 598 445

Overall classification accuracy ¼ 74.41 percent

Overall Kappa ¼ 68.16 percent

Table 4. Areal percentages of land cover classes.

Class

Fugitive

Dust

Process

Winter

Scene

(%)

Summer

Scene

(%)

Water Deposition 0.46 0.06

Undisturbed (high vegetation) Deposition 33.37 34.65

Vegetation (cultivated) Deposition 0.51 1.05

Vegetation Deposition 13.85 5.44

Undisturbed Generation 32.85 41.14

Bare Soil Generation 7.73 2.57

Urban (mixed) Transport 5.32 6.19

Urban (commercial/industrial) Transport 1.15 2.55

Asphalt þ Concrete Transport 4.77 6.35

Total 100.00 100.00
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these changes took place in the Undisturbed, Vegetation,
Water, and Bare Soil classes. These classes are most
likely to change spatially and spectrally during different
seasons because of changes in grass cover and pre-
cipitation (MacMahon, 1988). The relative direction of
the areal percentage changes for these classes is in good
agreement with this conclusion, suggesting that natural
fugitive dust source and sink areas are also seasonally
dependent.

The results of change detection analyses (Figure 10A,
B, and C) for the study area indicate that there is
significant variation in the spatial location of pixels
classified as Bare Soil, Undisturbed (high vegetation),
and all Urban land-cover types. These particular classes
were selected for analysis because they are representative
of fugitive dust generation, deposition, and transport
areas. Seasonal variations in the spectral character of
surficial materials (mainly due to presence or absence of
photosynthesizing grasses) can account for much of this
variation. The variation observed in the Urban class is

more problematic, however, because the spectral charac-
ter of these classes should not be seasonally dependent
following atmospheric correction. Slight mis-registration
errors between the two classified images (on the order of
0.5 pixel) could account for the large magnitude of
change observed in Figure 10C. Mis-classification of the
Urban (mixed) and AsphaltþConcrete class in particular
(discussed below) could account for much of the
variation observed in Figure 10C.

Urban (or built) land-cover types tend to be difficult to
classify accurately using hard classification techniques
because of the high degree of sub-pixel mixing associated
with the urban environment (Foody, 2000; Stefanov
et al., 2001). Inspection of the class training area means
and minimum/maximum values for both the winter and
summer maximum likelihood classifications (Figure 5)
indicates that considerable overlap exists between the
Urban (mixed) class and other land-cover classes. This is
because the Urban (mixed) class contains many of the
same surficial materials that comprise the other land-

Figure 10. Change detection images were derived by subtraction of the summer classification image from the winter classification image for three

land-cover classes representative of fugitive dust generation (A: Bare Soil), deposition (B: Undisturbed [high vegetation]), and transport (C: ‘‘Urban’’
[described in text]) areas. White pixels were classified as the land-cover type of interest in the summer scene, but not the winter scene; black pixels

were classified as the land-cover type of interest in the winter scene, but not the summer scene; and gray pixels were not classified as the land-cover

type of interest in either the winter or the summer scene.
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cover classes (Table 2). The correspondence between
field and ETMþ spectra for homogeneous surficial
materials is good (Figure 7), with major differences
resulting from scale variations between the two types of
measurements (4.45-cm-diameter spot for the field
spectrometer versus a 30-m 3 30-m ETMþ pixel). This
suggests that the low classification accuracies for the built
land-cover classes are a result of sub-pixel mixing rather
than poor training site selection. Fuzzy classification
techniques are designed to address the sub-pixel mixing
problem by assigning multiple classifications to each
pixel, which are ranked in order of probability (Foody,
2000). Application of a fuzzy classifier to the Phoenix,
AZ, urban area by Stefanov and others (2001) did not
produce significant increases in classification accuracy.
The land-cover types in Nogales and Phoenix are
generally similar, and therefore fuzzy classification was
not performed as part of the present work.

Classification accuracy for the Asphalt þ Concrete
class is particularly poor (44 percent), with the majority
of error resulting from confusion with the Bare Soil and
Undisturbed classes (Figure 5). Visual comparison of
both the field and ETMþ spectra (Figure 7) supports this
conclusion, because the spectral features of the Bare Soil
and Asphalt þ Concrete classes are similar. Road-grade
asphalt usually contains approximately 95 percent
aggregate, composed of sand- to gravel-sized minerals
and rocks that are typically locally derived (Brown et al.,
1989). It is unknown whether or not this is true for the
study area, but it could explain the observed spectral
similarity between the geological materials and asphalt.
Similar spectral confusion between river gravels and
asphalt in the Phoenix, AZ, area was overcome by
incorporating a GIS coverage that masked out the river
gravel deposits (Stefanov et al., 2001). However, a similar
dataset is not available for the Nogales study area.

Landsat ETMþ data has moderately high spatial
resolution (30 m/pixel) in six reflective spectral bands
(four in the visible to near infrared and two in the
shortwave infrared). The use of remotely sensed data with
higher spatial and spectral resolution could improve both
the classification accuracy and mapping detail for fugitive
dust-related land-cover types. Data collected by the
NASA ASTER sensor span the visible to near-infrared
(three bands at 15 m/pixel), shortwave infrared (six bands
at 30 m/pixel), and mid-infrared (five bands at 90 m/
pixel) wavelengths (Abrams, 2000). Multi-spectral short-
wave infrared and mid-infrared data in particular would
enhance the ability to classify disturbed soil regions such
as construction sites, dirt roadways, and agricultural
fields (Ben-Dor et al., 1999). Zhu and Blumberg (2002)
demonstrate high land-cover classification accuracy in the
Beer Sheva, Israel, metropolitan area using visible to
shortwave infrared ASTER data. The methodology
presented here was developed for use with ETMþ data

primarily because of the wide spatial and temporal
coverage of Landsat data (as compared with ASTER
data). However, the expert system model can be modified
for use with any remotely sensed dataset.

CONCLUSIONS

We demonstrate the application of remotely sensed
data for identification and mapping of land-cover types
associated with fugitive dust generation, transport, and
deposition in the Nogales, AZ, region. The associations
between land-cover types and dust processes presented
here provide a useful framework for assessment of the
classification results, and we consider them reasonably
accurate based on previous regulatory investigations in
the study area and field observations. However, more
detailed field work and integration of our results into
atmospheric models is required to confirm the land-cover/
fugitive dust connections we postulate here. Further air
quality assessments along the U.S.–Mexico border are
planned by the ADEQ. These will allow us to test the
assumptions of our methodology (in terms of dust
generation and transport sites) and assess the predictive
power of the technique (for dust deposition sites).

This work uses moderately high ground resolution,
multi-spectral data acquired by the ETMþ sensor on
board the Landsat 7 satellite; however, the technique
described here can be applied to higher-resolution (both
spatial and spectral) remotely sensed data as well. An
expert system (or hypothesis-testing) classification model
was employed to classify land cover in the study area.
The expert system land-cover classification performed
well for classes associated with fugitive dust generation
and deposition (85 to 95 percent user accuracy). Clas-
sification performance was less satisfactory for fugitive
dust transport classes (44 to 61 percent). This disparity in
results is caused mainly by sub-pixel mixing of built
classes and similarity to local surficial materials, as well
as the lack of useful ancillary data for the study area.
Change detection analyses indicate that the majority of
land-cover change in the study area is due to seasonal
variations in the presence of vegetation (most probably
grasses and herbaceous cover). This result implies that
the location of airborne dust generation and deposition
areas may have a significant seasonal dependence that
can be quantified using temporal series of remotely
sensed data. The accuracy of classification results
presented here could be improved by the incorporation
of ancillary GIS data. Inclusion of such data (census,
zoning, vegetation, and soil maps) would enable more
sophisticated post-classification sorting of land-cover
classifications derived from remotely sensed imagery.
Use of higher spatial and spectral resolution remotely
sensed data would also increase the ability to identify and
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delineate land-cover types (particularly soil types and
vegetation cover) associated with fugitive dust processes.

The land-cover classifications presented here are
useful for identification of potential ‘‘hot spots’’ that
can aid in focusing further field investigation, sampling
efforts, and dust control measures. The identification of
potential fugitive dust generation and deposition areas
is likely to be of greatest importance to atmospheric
scientists, government regulators, and health officials.
Therefore, our technique is useful for first-order modeling
of fugitive dust processes despite the low classification
accuracy of the transport classes. The digital and spatially
explicit format of the land-cover classification maps are
also ideal for input into existing air quality and
atmospheric transport models, such as the UAM-IV and
the MM5. The moderately high-resolution land-cover
data produced using our technique are an improvement
over the coarse spatial resolution data these models
typically use and can be used in a reference mode to
compare with the output of air quality and dust-transport
models.
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